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Abstract  

In this paper we consider the finite-time control problem for a class of networked systems 

with state delay and communication delay. The main result provided is a sufficient condition for 

the design of a state feedback controller which makes the closed loop systems finite-time stable. 

The sufficient condition is then reduced to a feasibility problem by involving linear matrix 

inequalities which is dependent on the size of the time delay and can be solved by LMI toolbox in 

MATLAB. When the LMI is feasible, the explicit expression of the desired finite-time control is 

also given. A numerical example is presented to illustrate the effectiveness of the proposed 

method. 
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1. Introduction 

Feedback control systems wherein the control loops are closed through a real-time network 

are called networked control systems (NCSs). The main feature of NCSs is that the components 

(sensors, controller and actuators) of the systems are connected by a network. Compared with 

traditional point-ti-point control systems, the NCSs have many advantages such as low cost, 

reduced wiring, simple installation and maintenance, and high reliability, etc
[1-3]

. For these 

reasons, NCSs have been widely applied to many complicated control systems, such as aviation 

and aerospace fields, and airplane manufacture
[4-5]

.  
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However, the insertion of the communication network in feedback control loop makes the 

analysis and design of NCSs complicated. The change of communication architecture induces 

different forms of time delays between sensors, actuators and controllers. These time delays come 

from the time sharing of the communication medium as well as the computation time required for 

physical signal coding and communication processing
[6-8]

. It is well known that time delays can 

degrade systems' performance and even cause systems instability. Therefore, the issues of 

stability analysis and designing controllers for NCSs have received much consideration for 

decades
[1-12]

. 

Much work has been done on the robust control of NCSs over the past ten years.  Most of 

the results in this field relate to stability and performance criteria defined over an infinite time 

interval. However, the main concern in many practical applications is the behavior of the 

dynamical systems over a fixed finite time interval
[13]

, for example, large values of the state are 

not acceptable in the presence of saturations. Therefore, we need to check the unacceptable 

values that the system state does not exceed a certain threshold during a fixed finite-time interval 

by giving some initial conditions. The concept of finite-time stability referring to these transient 

performances of control dynamics dates back to the Sixties, when it was introduced in the control 

literature
[14]

. Then, some attempts on finite-time stability can be found by using Lyapunov 

functional approach
[15]

. Recently, with the aid of linear matrix inequalities (LMIs) approach, 

more concepts of finite-time stability have been proposed for linear continuous-time or discrete-

time control systems in the literatures
[16 20]

.  

But the above papers consider the Lyapunov stability for NCSs, a few results on finite-time 

stability for NCSs has been reported. Based on this fact, some new methods and approaches 

should be developed for design controllers of NCSs, which motivates this paper. Inspired by the 

above literature, in this paper, the attention is focused on the finite-time control of a class of 

NCSs with state delay and communication delay. The design is divided in two steps: the 

synthesis condition of the state feedback controller, supposing that the state variables are 

available, and then the sufficient condition is given in terms of LMIs. Conversely, the approach 

proposed in this paper leads to LMIs formulation, which gives the opportunity of fitting the 

finite-time control problem in the general framework of the LMIs approach to the multi-objective 

synthesis. 

Notations: Throughout the paper, nR denotes the n  dimensional Eucliden space. 
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2. Preliminaries 

In this paper we consider the following typical NCSs shown in Fig. 1.  

     1 1( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )h hx t A A t x t A A t x t h B B t u t B B t t                   (1) 

where 1, , ,n n n m n l

hA A R B R B R     are constant matrices  respectively. ( ) nx t R  is the state 

vector, ( ) mu t R  is the control input, and h denotes systems state delay. ( ) lt R  is the exogenous 

disturbance  satisfying 

( ) ( ) , 0T t t d d                                                               (2) 

1( ), ( ) , ( ) , ( )n n n m n l

hA t A t R B t R B t R         are unknown matrices representing time-varying 

parameter uncertainties satisfying  

1 1 2 2

3 3 1 4 4

( ) ( )           ( ) ( )

( ) ( )          ( ) ( )

hA t D F t E A t D F t E

B t D F t E B t D F t E

   

   
 

Where 1 2 3 4 1 2 3 4, , , , , , ,D D D D E E E E are known constant matrices with appropriate dimensions, 

( )F t is unknown matrix with appropriate dimensions satisfying ( ) ( )TF t F t  I  

Actuator Sensor

Delay

Plant

Controller

Delay 
ca
  

sc
Network Medium

 

Fig. 1 A typical networked control systems 

To simplify the analysis, based on actual engineering background, a full characterization of 

the NCSs is given by the following assumption. 

Assumption1. The sensor is time driven; the controller and actuator are event driven. We 

use
sc and

ca to represent the sensor-controller and controller-actuator delay, respectively, then the 

communication delay is given by
sc ca    .                                                                    

Considering the effect of communication delay , the above plant model is transformed into 

an NCSs model 

1 1( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )h hx t A A t x t A A t x t h B B t u t B B t t                          (3) 

Concerning NCSs (3), we design a state feedback controller 

( ) ( )u t Kx t                                                              (4) 
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Where K  is a state feedback gain matrix to be determined later. Then, the resulting closed-

loop NCSs follows that 

      1( ) ( ) ( ) ( ) ( )hx t Ax t A x t h BKx t B t                                             (5) 

where 

1 1 1

( )          ( )

( )          ( )

h h hA A A t A A A t

B B B t B B B t

   

   
 

The aim of this paper is to find a sufficient condition which guarantees the existence of a 

state feedback controller which stabilizes systems (1) over the finite interval [0, ]T . By selecting 

the appropriate Lyapunov–Krasovskii function, the main results will be given in the form of 

LMIs. The general idea of finite-time control can be formalized through the following definitions 

over a finite-time interval for some given initial conditions [17 20] . 

Definition1. Given three positive scalars 1 2, ,c c T , with 1 2c c  and a positive matrix R , the 

time delay NCSs (3) (setting ( ) 0t  ) is said to be finite-time stable with respect to 1 2( , , , )c c T R , 

if 

1 2(0) (0) ( ) ( ) [0, ]T Tx Rx c x t Rx t c t T                                           (6) 

Discussion1. Different with the concept of Lyapunov asymptotic stability, finite-time stable 

is a practical concept used to study the behavior of a system within a finite interval. A system is 

said to be finite-time stable if, once we fix a finite-time interval, its state remains within 

prescribed bounds during this time interval. Obviously, a system which is finite-time stable may 

be not Lyapunov asymptotically stable; conversely a Lyapunov asymptotically stable system 

could be not finite-time stable if its state exceeds the prescribed bounds. 

Definition2. (Finite-time control via state feedback). Given three positive scalars 1 2, ,c c T , 

with 1 2c c , a positive definite matrix R , the time delay NCSs(3) is finite-time boundedness with 

respect to 1 2( , , , , )c c T R d  if there exists a state feedback controller in the form (4) and the 

following condition holds 

1 2(0) (0) ( ) ( ) [0, ]T Tx Rx c x t Rx t c t T      

Lemma1 [3]  For known constant 0   and matrices , ,D E F which satisfying TF F I , then the 

following matrix inequality is hold  

1T T T T TDEF E F D DD E E      

Lemma2
[4] The LMI 
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( ) ( )
0

( ) ( )T

Y x W x

W x R x

 
 

 
 

is equivalent to 

1( ) 0, ( ) ( ) ( ) ( ) 0TR x Y x W x R x W x    

Where ( ) ( ), ( ) ( )T TY x Y x R x R x  and ( )W x depend on x . 

The following lemma states a sufficient condition for the finite-time boundedness of a 

certain linear time-invariant systems in the form 

( ) ( ) ( )x t Ax t G t                                                         (7) 

which is fundamental to prove the main results in what follows. 

Lemma3 [16]  The networked control Systems (7) is finite-time boundedness with respect to 

1 2( , , , , )c c T R d if, letting (1/ 2) (1/ 2)

1 1Q R Q R  , there exist a positive scalar  and two symmetric 

positive definite matrices
1

n nQ R  and 
2

l lQ R  such that 

   1 1 1 2

2

0
TAQ Q A Q GQ

Q





  
 

  
                                              (8a) 

1 2

min 1 min 2 max 1( ) ( ) ( )

Tc c ed

Q Q Q



  



                                                  (8b) 

Where min ( )  and max ( )  indicate the maximum and minimum eigenvalue of the 

argument, respectively. 

 

3. Main Results 

In this section, we consider the finite-time control synthesis for NCSs with state delay and 

communication delay, in terms of LMIs, we obtain the sufficient condition for the finite-time 

control via state feedback.  

Theorem1. Given three positive scalars 1 2, ,c c T , with 1 2c c , a positive definite matrix R , 

the time delay NCSs (3) is finite-time stabilizable via  state feedback with respect to 

1 2( , , , , )c c T R d , if there exist a scalar 0  , positive definite matrices 
n nP R  , 

n nQ R  , 

n nM R  , 
l lS R  , and matrix

m nK R   such that the following matrix inequalities hold 

1

0 0
0

0

hPA PBK PB

Q

M

S

 
 
   
   
 
     

                                                (9a) 
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and 

1 max max max max

2

min

( ( ) ( ) ( )) ( )(1 )

( )

T

Tc P h Q M d S e
c e

P


   





   
                     (9b) 

where 

TPA A P Q M P      ,
1/ 2 1/ 2P R PR  ,

1/ 2 1/ 2Q R QR  , 
1/ 2 1/ 2T R MR   

and 
max ( )  and 

min ( )  indicate the maximum and minimum eigenvalue of the augment, 

respectively. 

The proof is given in Appendix 1. 

 

Theorem2. Given three positive scalars 1 2, ,c c T , with 1 2c c , a positive definite matrix R , 

the time delay NCSs(3) is finite-time stabilizable via  state feedback 1( ) ( )u t KX x t  with respect 

to 1 2( , , , , )c c T R d  if, there exist  scalars 0,  0,  1,2,3,4.i i    , positive definite matrices n nX R   , 

n nQ R  , n nM R  , l lS R  , and matrix m nK R  such that the following matrix inequalities hold: 

1 1

2

3

4

1

2

3

4

0 0 0

0 0 0 0 0

0 0 0 0

0 0 0
0

0 0 0

0 0

0

T

h

T

T T

T

A X BK B XE

Q XE

M K E

S E

I

I

I

I











 
 
  
   
 
    


     
 
      
 
       
         

                         (17a) 

1 1

1R X R                                                              (17b) 

2 1Q X                                                                 (17c) 

3 1M X                                                                 (17d) 

40 S I                                                               (17e) 

4 2 1

1

2

3

(1 )

0 0
0

0

T Td e c e c h  







   
 

   
   
 

     

                                (17f) 

Where 

1 1 1 2 2 2 3 3 3 4 4 4

T T T T TAX XA Q M X D D D D D D D D               

The proof is given in Appendix 2. 
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Discussion2. If condition (10a) in Theorem 2 is satisfied with 0  , then systems(3) is also 

asymptotically stable in the sense of Lyapunov. Moreover in this case the finite-time properties 

are guaranteed for all  0T  . 

 

4. Numerical Example 

With the introduction of network, the control signal exchanged through network in NCSs.      

The temperature control system for polymerization reactor is a inertia link with time delay. 

The state space model of polymerization reactor is usually written as 

1 2

2 1 1 2 2

1

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

x t x t

x t a x t a x t bu t

y t x t



   



 

It is impossible to avoid the uncertainty and time delay. We consider the uncertain networked 

control systems as following 

1 1( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )h hx t A A t x t A A t x t h B B t u t B B t t            

where  

1 1

2 3 4

1 2

0 0.5 0 0.1 0 1 0.1 0.2
,    ,   ,   ,    ,

0 0.1 0.1 0 1 1 0.2 0

0.1 0 0.05 0 0.5 0
,   ,   ,   ( ) sin ,

0 0.1 0 0.05 0 0.3

0.01 0.04 0 0.1
,   

0 0.3 0.02 0.

hA A B B D

D D D F t t

E E

         
             

         

     
        
     

 
  
 

3 4

1 2

0 0 0 0.09
 , , ,

1 0.1 0.1 0.09 0

5,   0.2,   0.1,   ( ) 0.5cos ,   ( ) ( ) ( )
T

T T

E E

T h t t x t x t x t 

     
      

     

       

 

In this case, we choose 1 2 20.25,  0.5,  8,  c c T R I    . By Solving the LMIs (10), we 

can obtain 

1

2 3 4

0.8323 0.4744 2.5921 0.8455 1.3342 0.2329
, ,

0.764 0.8926 0.8995 0.7221 0.2679 1.0443

2.64238 0.9654
, [ 6.5321  4.9827], 0.2167, 0.5484,

0.9983 1.0557

1.5374, 0.2466, 0

X Q M

S K  

  

      
       

      

 
     

 

   .8934

 

Then the state feedback controller is  

1( ) ( ) [ 6.5321  4.9827] ( )u t KX x t x t    

We select the initial condition 
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0.5
(0)

0.5
x

 
  

 
 

With the state feedback finite-time controller (4) in Theorem 2, the simulation results are shown 

in figs. 2. 

  

Fig.2. State responses of systems (3) 

From the Fig.2, it is clear to see that the design method of state feedback finite-time control 

for NCSs (3) is effective. 

 

5. Conclusion 

A general theoretical result involving the Lyapunov functional gives a general sufficient 

condition for the finite-time stability of NCSs. Nevertheless, this result is not practical and cannot 

be used to stabilize in finite time a large class of linear systems. This is the reason why we 

consider the finite-time state feedback control problem has been investigated for a class of NCSs 

with state delay and communication delay in this paper. First of all, we have given the definition 

of finite-time stability of NCSs. Then, combined with LMIs techniques, we have provided a 

sufficient condition guaranteeing finite-time stability via state feedback. This condition has been 

turned into an optimization problem involving LMIs. A numerical example is provided to 

demonstrate the effectiveness of the proposed approach. 
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Appendix 1   Proof of Theorem 1 

Proof.  For given symmetric positive definite matrix , ,P Q M , we construct the following 

Lyapunov–Krasovskii function: 

          
- -

( ( )) ( ) ( ) ( ) ( ) ( ) ( )
t t

T T T

t h t
V x t x t Px t x Qx d x Mx d


                                       (11) 

The time derivative of ( ( ))V x t along the trajectories of systems (5) is given by  

1

 ( ( ))= ( )( ) ( ) 2 ( ) ( ) 2 ( ) ( )

               2 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
            

( ) ( )

( ) ( )

T T T T

h

T T T

T

V x t x t PA A P Q M x t x t PA x t h x t PBKx t

x t PB t x t h Qx t h x t Mx t

x t x t

x t h x t h

x t x t

t t



  

 

 

      

      

   
   

 
    
   
  
   




 

where 

1

0 0

0

0

T

hPA A P Q M PA PBK PB

Q

M

   
 

   
   
 

    

 

From condition (9a), we have 

( ( )) ( ) ( ) ( ) ( ) ( ( )) ( ) ( )T T TV x t x t Px t t S t V x t t S t                                (12) 

Multiplying (12) by te  , we can obtain 

( ( )) ( ( )) ( ) ( )t t t Te V x t e V x t e t S t          

Furthermore 

( ( ( ))) ( ) ( )t t Td
e V x t e t S t

dt

      

By integrating the above inequality from 0 to t , with [0, ]t T , it follows that 

0
( ( )) ( (0)) ( ) ( )

t
t Te V x t V x e S d                                                     (13) 
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Noting that 0  ,
1/ 2 1/ 2P R PR  , 1/ 2 1/ 2Q R QR  , and 1/ 2 1/ 2M R MR  , we can obtain the 

following relation: 

max
0

0 0

max

0
1/ 2 1/ 2 1/ 2 1/ 2

0
1/ 2 1/ 2

ma

( ) ( ) ( ( ))

( (0)) ( )

[ (0) (0) ( ) ( ) ( ) ( ) ( )(1 )]

[ (0) (0) ( ) ( )

 ( ) ( )

T

t
t t

t T T T t

h

t T T

h

T

x t Px t V x t

e V x d S e e d

e x Px x Qx d x Mx d d S e

e x R PR x x R QR x d

x R MR x d d

  

 







  

      

  

   





 







 

    

 

 



 



 x ( )(1 )]tS e 

 (14) 

0

max max

0

max max
-

1 max max max max

[ ( ) (0) (0) ( ) ( ) ( )

 ( ) ( ) ( ) ( )(1 )]

[ ( ( ) ( ) ( )) ( )(1 )]

t T T

h

T t

T t

e P x Rx Q x Rx d

M x Rx d d S e

e c P h Q M d S e







 

    

    

   







 

  

    




 

On the other hand, it yields 

1/ 2 1/ 2

min( ) ( ) ( ) ( ) ( ) ( ) ( )T T Tx t Px t x t R PR x t P x t Rx t                                      (15) 

Putting together (14) and (15) we have 

1 max max max max

min

[ ( ( ) ( ) ( )) ( )(1 )]
( ) ( )

( )

T T

T e c P h Q M d S e
x t Rx t

P

    



   
                          (16) 

The condition (9b) and inequality (16) imply,  

2( ) ( ) , [0, ]Tx t Rx t c t T   . 

This completes the proof. Therefore, the proof follows. 

 

Appendix 2   Proof of Theorem 2 

Proof.  Now we prove that the inequality (9a) is equivalent to the inequality (10a). 

Inserting (5) into (9a), we have 

1 1( ) ( ) ( )

0 0
0

0

h hPA P A t PBK P B t K PB P B t

Q

M

S

       
 
 
  
   
 
    

 

where 

( ) ( )T TPA A P Q M P P A t A t P          

The above inequality is equivalent to 
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1

3 3 4 41 1 1 1 2 2

0 0

0

( ) ( )( ) ( ) ( )

0 00
0

0 0

0

T

h

T T T

PA A P Q M P PA PBK PB

Q

M

S

PD F t E K PD F t EPD F t E E F t D P PD F t E





    
 

  
   
 

     

  
 

  
  
 

  

 

With Lemma1, we obtain that the above inequality is equivalent to 

1

2 2

2

3 3

3

4 4

4

1
0 0

01
0

1

h

T

T T

T

PA PBK PB

Q E E

M K E E K

S E E








 
 
   
 
 

    
 
 
     
 
 

 

where 

1 1 1 2 2 2 3 3 3 4 4 4 1 1

1

1T T T T T TPA A P Q M P PD D P PD D P PD D P PD D P E E    


            

With lemma2, we know that the above inequality is equivalent to  

1 1

2

3

4

1

2

3

4

0 0 0

0 0 0 0 0

0 0 0 0

0 0 0
0

0 0 0

0 0

0

T

h

T

T T

T

PA PBK PB E

Q E

M K E

S E

I

I

I

I











 
 
  
   
 
    


     
 
      
 
       
         

 

where 

1 1 1 2 2 2 3 3 3 4 4 4

T T T T TPA A P Q M P PD D P PD D P PD D P PD D P               

 Pre-and post-multiplying the above inequality by block-diagonal matrix 

diag -1 -1 -1{ , , , , , , , }P P P I I I I I , we know the inequality (9a) is equivalent to 
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1 1 1

1 1

11 1
2

11 1
3

4

1

2

3

4

0 0 0

0 00 0 0

0 00 0

0 00
0

0 0 0

0 0

0

T

h

T

T T

T

A P BKP B P E

P EP QP

P K EP MP

ES

I

I

I

I











  

 

 

 
 
  
   
 
     
     
 

     
       
         

              (17) 

where  

1 1 1 1 1 1 1

1 1 1 2 2 2 3 3 3 4 4 4

T T T T TAP P A P QP P MP P D D D D D D D D                     

By letting -1 1 1 1 1 1, , ,X P K KP Q P QP M P MP         , the inequality (17) is equivalent to 

inequality (10a).   

On the other hand, we denote 

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2, ,X R XR Q R QR M R MR         

 Consider that R is the positive-definite matrix and 

max

min

1
( )=

( )
X

P



  , min

max

1
( )=

( )
X

P



 

Now inequalities (10b-10e) imply that 

1 1

min max max max max max max 4

1 2 3

1
1 ( ), ( ) , ( ) ( ), ( ) ( ), ( )P P Q P M P S

 
       

  
                (18) 

With the Schur Lemma2, we know the inequality (10f) is equivalent to  

1

4 2

1 2 3

(1 ) 0T T c h
d e c e  


  

                                                        (19) 

With (18), the condition (9b) follows that 

1 max max max max 1

4

1 2 3min

( ( ) ( ) ( )) ( )(1 )
(1 )

( )

T

Tc P h Q M d S e c h
d e

P


    


  



   
              (20) 

Inserting the inequality (19) into (20), the inequality (9b) is satisfied. This completes the proof. 
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